133 honeycomb | |
---|---|
(no image) | |
Type | Uniform tessellation |
Schläfli symbol | {3,33,3} |
Coxeter symbol | 133 |
Coxeter-Dynkin diagram | |
7-face type | 132 |
6-face types | 122 131 |
5-face types | 121 {34} |
4-face type | 111 {33} |
Cell type | 101 |
Face type | {3} |
Cell figure | Square |
Face figure | Triangular duoprism |
Edge figure | Tetrahedral duoprism |
Vertex figure | Trirectified 7-simplex |
Coxeter group | , [33,3,1] |
Properties | vertex-transitive, facet-transitive |
In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schlafli symbol {31,3,3}, is composed of 132 facets.
Contents |
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing a node on the end of one of the 3-length branch leaves the 132, its only facet type.
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the trirectified 7-simplex, 033.
The edge figure is determined by removing the ringed nodes of the vertex figure and ringing the neighboring node. This makes the tetrahedral duoprism, {3,3}×{3,3}.
The face figure is determined by removing the ringed nodes of the edge figure and ringing the neighboring node. This makes the triangular duoprism, {3}×{3}.
Each vertex of this polytope corresponds to the center of a 6-sphere in a moderately dense sphere packing, in which each sphere is tangent to 70 others; the best known for 7 dimensions (the kissing number) is 126.
The group is related to the by a geometric folding, so this honeycomb can be projected into the 4-dimensional demitesseractic honeycomb.
{3,33,3} | {3,3,4,3} |